Existence and multiplicity of nontrivial solutions for Schrödinger-Poisson systems on bounded domains
نویسندگان
چکیده
منابع مشابه
Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملOn a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملGlobal Existence for the Vlasov-poisson System in Bounded Domains
f (0, x, v) = f0 (x, v) x ∈ Ω , v ∈ R (1.4) f (t, x, v) = f (t, x, v∗) x ∈ Ω , v ∈ R , t > 0 (1.5) where Ω is a convex bounded domain with C5 boundary, nx denotes the outer normal to ∂Ω and (1.6) f0 (x, v) ≥ 0 Here f (t, x, v) denotes the distribution density of electrons, φ (t, x) is the electric potential. The function h in (1.3) will be assumed to be positive and satisfy the following compat...
متن کاملExistence and multiplicity of nontrivial solutions for double resonance semilinear elliptic problems
We consider resonance problems at an arbitrary eigenvalue of the Laplacien. We prove the existence of nontrivial solutions for some semilinear elliptic Dirichlet boundary values problems. We also obtain two nontrivial solutions by using Morse theory.
متن کاملExistence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term
The existence, nonexistence and multiplicity of positive radially symmetric solutions to a class of Schrödinger–Poisson type systems with critical nonlocal term are studied with variational methods. The existence of both the ground state solution and mountain pass type solutions are proved. It is shown that the parameter ranges of existence and nonexistence of positive solutions for the critica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2018
ISSN: 1687-2770
DOI: 10.1186/s13661-018-0933-y